

Extreme Data-Intensive Computing in Astrophysics

Alex Szalay
The Johns Hopkins University

The Science of Big Data

- Data growing exponentially, in all science
- Changes the nature of science
 - =>from hypothesis-driven to data-driven discovery
- Cuts across all sciences
- Non-incremental!
- Industry and government faces the same challenges
 - Google, Microsoft, Yahoo, NSA, DOD,...
 - Google (~10 Exabytes, many Tbits/s bandwidth)
- Convergence of physical and life sciences through Big Data (statistics and computing)
- A new scientific revolution
 - => a rare and unique opportunity

Non-Incremental Changes

 Science is moving from hypothesis-driven to datadriven discoveries

Astronomy has always been data-driven.... now becoming more generally accepted

- Need new data intensive scalable architectures
- Need new randomized, incremental algorithms
 - Best result in 1 min, 1 hour, 1 day, 1 week
- New computational tools and strategies
 - ... not just statistics, not just computer science, not just astronomy...

Continuing Growth

How long does the data growth continue?

- High end always linear
- Exponential comes from technology + economics
 - rapidly changing generations
 - like CCD's replacing plates, and become ever cheaper
- How many generations of instruments are left?
- Are there new growth areas emerging?
- Software is becoming a new kind of instrument
 - Value added data
 - Hierarchical data replication
 - Large and complex simulations

Cosmological Simulations

In 2000 cosmological simulations had 10¹⁰ particles and produced over 30TB of data (Millennium)

- Build up dark matter halos
- Track merging history of halos
- Use it to assign star formation history
- Combination with spectral synthesis
- Realistic distribution of galaxy types
- Today: simulations with 10¹² particles and PB of output are under way (MillenniumXXL, Silver River, etc)
- Hard to analyze the data afterwards -> need DB
- What is the best way to compare to real data?

Time evolution: merger trees

Mock Catalogues

Spatial queries, random samples

- Spatial queries require multi-dimensional indexes.
- (x,y,z) does not work: need discretisation
 - index on (ix,iy,iz) withix=floor(x/10) etc
- More sophisticated: space fillilng curves
 - bit-interleaving/octtree/Z-Index
 - Peano-Hilbert curve
 - Need custom functions for range queries
 - Plug in modular space filling library (Budavari)

- Random sampling using a RANDOM column
 - RANDOM from [0,1000000]

Merger trees:

select prog.*
 from galaxies d
 , galaxies p
where d.galaxyId = @id
 and p.galaxyId
 between d.galaxyId
 and d.lastProgenitorId

Branching points:

select descendantId
 from galaxies d 63
where descendantId != -1
group by descendantId
having count(*) > 1

Immersive Turbulence

"... the last unsolved problem of classical physics..." Feynman

Understand the nature of turbulence

- Consecutive snapshots of a large simulation of turbulence: now 30 Terabytes
- Treat it as an experiment, play with the database!
- Shoot test particles (sensors) from your laptop into the simulation, like in the movie Twister
- Next: 70TB MHD simulation

New paradigm for analyzing simulations!

with C. Meneveau, S. Chen (Mech. E), G. Eyink (Applied Math), R. Burns (CS)

The Milky Way Laboratory

- Use cosmology simulations as an immersive laboratory for general users
- Via Lactea-II (20TB) as prototype, then Silver River (50B particles) as production (15M CPU hours)
- 800+ hi-rez snapshots (2.6PB) => 800TB in DB
- Users can insert test particles (dwarf galaxies) into
 - system and follow trajectories in pre-computed simulation
- Users interact remotely with a PB in 'real time'

Madau, Rockosi, Szalay, Wyse, Silk, Lemson, Westermann, Blakeley

Visualizing Petabytes

- Needs to be done where the data is...
- It is easier to send a HD 3D video stream to the user than all the data
- Interactive visualizations driven remotely
- Visualizations are becoming IO limited: precompute octree and prefetch to SSDs
- It is possible to build individual servers with extreme data rates (5GBps per server... see Data-Scope)
- Prototype on turbulence simulation already works: data streaming directly from DB to GPU
- N-body simulations next

3D Vorticity in a Turbulent Flow

Kai Buerger, Technische Universitat Munich

Amdahl's Laws

Gene Amdahl (1965): Laws for a balanced system

- i. Parallelism: max speedup is S/(S+P)
- ii. One bit of IO/sec per instruction/sec (BW)
- iii. One byte of memory per one instruction/sec (MEM)

Modern multi-core systems move farther away from Amdahl's Laws (Bell, Gray and Szalay 2006)

Amdahl Numbers for Data Sets

The Data Sizes Involved

DISC Needs Today

- Disk space, disk space, disk space!!!!
- Current problems not on Google scale yet:
 - 10-30TB easy, 100TB doable, 300TB really hard
 - For detailed analysis we need to park data for several months
- Sequential IO bandwidth
 - If not sequential for large data set, we cannot do it
- How do can move 100TB within a University?

1Gbps10 days

10 Gbps1 day (but need to share backbone)

100 lbs box few hours

- From outside?
 - Dedicated 10Gbps or FedEx

Silver River Transfer

150TB in less than 10 days from Oak Ridge to JHU using a dedicated 10G connection

Tradeoffs Today

"Extreme computing is about tradeoffs"

Stu Feldman (Google)

Ordered priorities for data-intensive scientific computing

- 1. Total storage (-> low redundancy)
- 2. Cost (-> total cost vs price of raw disks)
- 3. Sequential IO (-> locally attached disks, fast ctrl)
- 4. Fast stream processing (->GPUs inside server)
- 5. Low power (-> slow normal CPUs, lots of disks/mobo)

The order will be different in a few years...and scalability may appear as well

Cost of a Petabyte

From backblaze.com Aug 2009

JHU Data-Scope

- Funded by NSF MRI to build a new 'instrument' to look at data
- Goal: 102 servers for \$1M + about \$200K switches+racks
- Two-tier: performance (P) and storage (S)
- Large (5PB) + cheap + fast (400+GBps), but ...
 -a special purpose instrument

	1P	1S	90P	12S	Full	
servers	1	1	90	12	102	
rack units	4	12	360	144	504	
capacity	24	252	2160	3024	5184	ТВ
price	8.5	22.8	766	274	1040	\$K
power	1	1.9	94	23	116	kW
GPU	3	0	270	0	270	TF
seq IO	4.6	3.8	414	45	459	GBps
netwk bw	10	20	900	240	1140	Gbps

Proposed Projects at JHU

Discipline	data [TB]	
Astrophysics	930	
HEP/Material Sci.	394	
CFD	425	
BioInformatics	414	
Environmental	660	
Total	2823	

19 projects total proposed for the Data-Scope, more coming, data lifetimes between 3 mo and 3 yrs

Increased Diversification

One shoe does not fit all!

- Diversity grows naturally, no matter what
- Evolutionary pressures help
 - Large floating point calculations move to GPUs
 - Large data moves into the cloud (private or public)
 - RandomIO moves to Solid State Disks
 - Stream processing emerging (SKA...)
 - noSQL vs databases vs column store vs SciDB ...
- Individual groups want subtle specializations

At the same time

- What remains in the middle (common denominator)?
- Boutique systems dead, commodity rules
- We are still building our own...

Summary

- Science is increasingly driven by large data sets
- Large data sets are here, COTS solutions are not
 - 100TB is the current practical limit
- We need a new instrument: a "microscope" and "telescope" for data=> a Data-Scope!
- Increasing diversification over commodity HW
- Changing sociology:
 - Data collection in large collaborations (VO)
 - Analysis done on the archived data, possible (and attractive) for individuals
- A new, Fourth Paradigm of Science is emerging...

but it is not incremental....

"If I had asked my customers what they wanted, they would have said faster horses..."

Henry Ford

From a recent book by Eric Haseltine: "Long Fuse and Big Bang"